Geocentrix

ReActiv 2

Reference Manual

Information in this document is subject to change without notice and does not represent a commitment on the part of Geocentrix Ltd. The software described in this document is furnished under a licence agreement or non-disclosure agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy the software except as specifically allowed in the licence or non-disclosure agreement. No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Geocentrix Ltd.

©1994-2021 Geocentrix Ltd. All rights reserved.

"Geocentrix", "ReActiv", "ReWaRD", and "Repute" are registered trademarks of Geocentrix Ltd. Other brand or product names are trademarks or registered trademarks of their respective holders

Set in Optimum using Corel WordPerfect X7. Printed in the UK.

Acknowledgments

ReActiv was designed and written by Dr Andrew Bond of Geocentrix, based on theory developed by Drs Jerry Love and George Milligan of the Geotechnical Consulting Group (GCG).

Version 1.0 of the program was tested by Rob Nyren (formerly at GCG) and Dr Ken Brady and Doug Boden of the Transport Research Laboratory. Version 1.5 was tested by Cedric Allenou (formerly at GCG). Professor David Hight of GCG helped design the database of critical state soil parameters.

The documentation was written by Andrew Bond and Jerry Love (of GCG).

Revision history

Last revised 27th October 2021 (for version 2.0.0).

Table of contents

Acknowledgments	2
Revision history	2
Table of contents	3
Introduction	5
About this book	5
Conventions	6
Where to go for help	7
ReActiv's help system	7
Software Re-Assurance™	7
Sales and marketing information	8
Documentation	8
Notes	8
Background theory and assumptions.	9
Two-part wedge mechanism with horizontal reinforcement	9
Factors-of-safety	10
Governing equations	10
Equations with zero interwedge friction	11
Equations with interwedge friction	12
$\zeta_1 \text{ or } \zeta_2$?	13
Interwedge friction angle	13
Critical mechanism	13
T _{max} mechanism	14
T _{ob} mechanism	14
Required reinforcement	14
Number of layers	15
Depth to the first layer	15
Pullout length of the first layer	16
Normal effective stress	16
Depths of layers 2-n	16
Further checks	17
Two-part wedge mechanism with inclined reinforcement	17
Governing equations	18
$\zeta_1 \text{ or } \zeta_2$?	18
T _{maxō} mechanism	18
T _{ob} mechanism	19
Required reinforcement	19
Normal effective stress	19

Base-sliding resistance	20
Compatibility with the Advice Note	20
Pullout resistance	21
Compatibility with the Advice Note	23
Minimizing soil nail pullout lengths	23
Special considerations for Two-part slopes	23
Surcharges	24
Compatibility with the Advice Note	26
Proceeding to a final design	27
Checking individual mechanisms	27
Competent foundation	27
Front facing	27
	28
Checking pullout of the base layer	
Elongation of reinforcement	28
Drainage	28
Inherent conservatism of a frictionless interwedge boundary	28
Using ReActiv to check other design methods	29
Comparison with published results.	31
Horizontal reinforcement	31
Inclined reinforcement	33
Soil Classification System	36
Database of soil properties	38

Introduction

Welcome to ReActiv®, the reinforced slope design program. ReActiv is an interactive program that helps you to design reinforced slopes in a variety of different soil types, using reinforced soil or soil nails.

This chapter of the *ReActiv User Manual* outlines the contents of this book, explains the conventions that are used herein, and tells you what to do if you need help using the program.

About this book

This User Manual is divided into the following chapters:

- Introduction
- Background theory and assumptions
- Proceeding to a final design
- Comparisons with published results
- Soil Classification System

Conventions

To help you locate and interpret information easily, the *ReActiv User Manual* uses the following typographical conventions.

This	Represents
Bold	Items on a menu or in a list-box; the text on a button or next to an edit control; or the label of a group box.
ltem1 > ltem2	An item on a cascading menu. Item1 is the name of an option on the main menu bar (such as File or Window); and Item2 is the name of an option on the cascading menu that appears when you select Item1 (such as New or Open). Thus, File > New represents the New command from the File menu.
italic	Placeholders for information you must provide. For example, if you are asked to type <i>filename</i> , you should type the actual name for a file instead of the word shown in italics.
	Italic type also signals a new term. An explanation immediately follows the italicized term.
monospaced	Anything you must type on the keyboard.
CAPITALS	Directory names, filenames, and acronyms.
KEY1+KEY2	An instruction to press and hold down key 1 before pressing key 2. For example, "ALT+ESC" means press and hold down the ALT key before pressing the ESC key. Then release both keys.
KEY1, KEY2	An instruction to press and release key 1 before pressing key 2. For example, "ALT, F" means press and release the ALT key before pressing and releasing the F key.

Page | 7

Where to go for help

Your first source of help and information should be this manual and the ReActiv's extensive help system.

ReActiv's help system

ReActiv's help system contains detailed information about all aspects of the program. Help appears in a separate window with its own controls. Help topics that explain how to accomplish a task appear in windows that you can leave displayed while you follow the procedure.

To open the help system:

- Press F1
- Click the **Help** button in any dialog box
- Choose a command from the **Help** menu

If you need assistance with using the help system, choose the **How To Use Help** command from the **Help** menu.

Tooltips

If you pause while passing the mouse pointer over an object, such as a toolbar button, ReActiv displays the name of that object. This feature, called *tooltips*, makes it easier for you to identify what you see and to find what you need.

Software Re-Assurance[™]

Software Re-assurance for ReActiv (including updates, upgrades, and technical support) is available direct from Geocentrix. If you require Re-Assurance, please contact Geocentrix as follows:

ReActiv Technical Support Geocentrix Ltd Scenic House, 54 Wilmot Way Banstead, Surrey	T: +44 (0)1737 373963 E: <u>support@geocentrix.co.uk</u> W: <u>www.geocentrix.co.uk/support</u>
SM7 2PY, United Kingdom	Please be at your computer and have your licence number ready when you
Please quote your licence number and on all correspondence	call

Sales and marketing information

For sales and marketing information about ReActiv, please visit

http://www.geocentrix.co.uk/reactiv/index.html

or contact ReActiv Sales on the same numbers as above.

Documentation

The latest version of this *User Manual* (including any corrections and/or additions since the program's first release) are available in electronic (Adobe® Acrobat®) format from the Geocentrix website (www.geocentrix.co.uk/reactiv) and follow links to ReActiv's documentation.

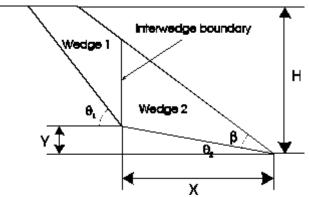
Notes

The screenshots in this guide were produced on Windows 10. Your screen may differ, depending on the version of Windows on which you run ReActiv. Not all options are available in every edition of ReActiv.

In this guide, '[Documents]' refers to the folder where your ReActiv projects are saved. For Windows 10 and later this is:

```
C:\Users\Public\Documents\Geocentrix\ReActiv\2.0
```

Background theory and assumptions


The UK Highways Agency's (HA's) Advice Note Design methods for the reinforcement of highway slopes by reinforced soil and soil nailing techniques (hereinafter called the Advice Note) describes a simple design method for the preliminary assessment of reinforcement requirements for highway slopes, using either reinforced soil or soil nailing techniques.

ReActiv follows this design method step-by-step, and is intended to fully compliment the Advice Note. However, the *User Manual* is also designed as a stand-alone document, so that it is not necessary to refer to the Advice Note to use the program. The theory behind ReActiv is, in some places, more advanced than that in the Advice Note.

This chapter gives a brief résumé of the basic theory and assumptions behind the design method used by ReActiv. The design is carried out in terms of effective stresses and applies to the long-term condition of permanent works. In some cases the notation adopted in this *User Manual* differs from that used in the Advice Note. A translation table of the terms that are different is given at the end of the chapter.

Two-part wedge mechanism with horizontal reinforcement

The design method used by ReActiv is based on limiting equilibrium of a two-part wedge mechanism (as shown below).

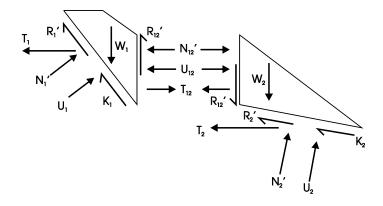
The mechanism considered has a vertical interwedge boundary. When there is no friction on the interwedge boundary, it provides inherently conservative solutions combined with reasonable simplicity, and is particularly suitable to reinforced soil geometries.

The inherent conservatism of the method can be reduced by taking interwedge friction into account. Guidance is given on this later in this chapter. Guidance is also given on the assumptions behind the method's simplified reinforcement distribution.

The design method assumes that a competent bearing material (which is significantly stronger than the slope fill) exists beneath the retained slope. The twopart wedge mechanism is constrained to pass through the toe of the slope.

ReActiv may be used as an automatic design tool or as a calculator. When used as a design tool, the program automatically and rapidly leads you to an optimized reinforcement layout for the given slope geometry, soil parameters, water regime, reinforcement type, etc. You do not have to guess a reinforcement layout or perform trial-and-error calculations (although you may do so, if you so wish).

Factors-of-safety


ReActiv employs partial factors-of-safety, along the lines given in the Advice Note.

The reinforcement strength that is entered into the program is assumed to be a *design* value (i.e. already factored).

You can enter soil strength parameters either as design values (i.e. critical state or large displacement values) or as peak values. When you specify strength parameters in terms of peak values, the program requires you to enter the partial factors-of-safety that should be applied to these peak values before using them for design.

Governing equations

The following diagram defines the forces acting on the two-part wedge mechanism when horizontal reinforcement is used.

The various symbols on this diagram have the following meanings:

- W_i is the weight of Wedge i
- N' is the force due to effective earth pressures acting on the base of Wedge
 i
- U_i is the force due to water pressures acting on the base of Wedge i
- R_i is the force due to friction along the base of Wedge i
- K_i is the force due to effective cohesion along the base of Wedge i
- N'_{12} is the force due to effective earth pressures on the interwedge boundary
- U₁₂ is the force due to water pressures on the interwedge boundary
- R'_{12} is the force due to friction along the interwedge boundary
- T_i is the reinforcement force provided through the base of Wedge i
- T₁₂ is the reinforcement force transferred through the interwedge boundary

The expression for the out-of-balance horizontal reinforcement force (T) required for equilibrium is:

$$T = T_1 + T_2$$

The value of T can be derived from the expressions given in Appendix A of the Advice Note.

Equations with zero interwedge friction

If it is assumed that there is no friction on the interwedge boundary (i.e. $R'_{12} = 0$),

the equation for T is given by:

$$T = \frac{W_1(\tan\theta_1 - \tan\phi) + \left(\frac{U_1\tan\phi - K_1}{\cos\theta_1}\right)}{1 + \tan\theta_1\tan\phi}$$
$$+ \frac{W_2(\tan\theta_2 - \lambda_s\tan\phi) + \lambda_s\left(\frac{U_2\tan\phi - K_2}{\cos\theta_2}\right)}{1 + \lambda_s\tan\theta_2\tan\phi}$$

The symbols in this equation that are not defined above are as follows:

- ϕ is the angle of friction of the soil
- θ_i is the angle that the base of Wedge i makes to the horizontal
- λ_s is a *sliding factor* (see below)

The *sliding factor* (λ_s) depends on the properties of the reinforcement and, in particular, on how much of the sliding surface the reinforcement occupies.

Equations with interwedge friction

If it is assumed that friction acts on the interwedge boundary (i.e. $R'_{12} \neq 0$), then the general equation for T is not determinate unless an assumption is made regarding the relative magnitudes of T_1 , T_2 , and T_{12} .

The simplest option is to adopt one or other of the following assumptions:

- All the reinforcement force acts on Wedge 1 (in which case $T_{12} = T_2$)
- All the reinforcement force acts on Wedge 2 (in which case $T_{12} = T_1$)

In both cases, the equation for T is:

$$T = \zeta_n \left[\frac{W_1 \left(\tan \theta_1 - \tan \phi \right) + \left(\frac{U_1 \tan \phi - K_1}{\cos \theta_1} \right) - U_{12} \left(1 + \tan \theta_1 \tan \phi \right)}{\left(1 + \tan \theta_1 \tan \phi \right) + \left(\tan \theta_1 - \tan \phi \right) \tan \phi_{12}} \right]$$

$$+\zeta_{n}\left[\frac{W_{2}(\tan\theta_{2}-\lambda_{s}\tan\phi)+\lambda_{s}\left(\frac{U_{2}\tan\phi-K_{2}}{\cos\theta_{2}}\right)-U_{12}(1+\lambda_{s}\tan\theta_{2}\tan\phi)}{(1+\lambda_{s}\tan\theta_{2}\tan\phi)+(\tan\theta_{2}-\lambda_{s}\tan\phi)\tan\phi_{12}}\right]$$

where ϕ_{12} is the angle of interwedge friction and ζ_n (zeta) is given below. The subscript *n* (= 1 or 2) denotes which wedge the reinforcement force acts on.

ζ_1 or ζ_2 ?

The assumption that the reinforcement force is carried solely by Wedge 1 (i.e. using ζ_1) leads to overly conservative designs for horizontal reinforcement. The formula for ζ_1 is:

$$\zeta_1 = 1 + \left[\frac{\sin\theta_1 - \cos\theta_1 \tan\phi}{\cos\theta_1 - \sin\theta_1 \tan\phi}\right] \tan\phi_{12}$$

The alternative assumption, that the reinforcement force is carried solely by Wedge 2 (i.e. using ζ_2), leads to less conservative but more reasonable designs. The formula for ζ_2 is:

$$\zeta_2 = 1 + \left[\frac{\sin \theta_2 - \lambda_s \cos \theta_2 \tan \phi}{\cos \theta_2 - \lambda_s \sin \theta_2 \tan \phi} \right] \tan \phi_{12}$$

Interwedge friction angle

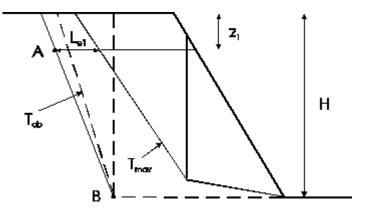
The value of ζ_n depends on what angle of friction (φ_{12}) is assumed to act along the interwedge boundary. When $\varphi_{12} = 0$, $\zeta_n = 1$. Appendix A of the Advice Note describes the results of a parametric study of the effects of φ_{12} on the maximum out-of-balance force (T_{max}) for slopes inclined at angles (β) between 40 and 70°. The figures from the Advice Note, which are reproduced here in Appendix 2, indicate that the maximum safe value for the interwedge friction angle is $\frac{1}{2}\varphi$.

Critical mechanism

The critical mechanism at any one point in the slope is the mechanism that requires the greatest reinforcement force to establish its equilibrium. The critical mechanism is found by varying the angle of the upper wedge (θ_1) while keeping the mechanism's heel (X, Y) in the same place.

T_{max} mechanism

The T_{max} mechanism is the critical mechanism anywhere in the slope (including the baseline) that requires the greatest reinforcement force to establish its equilibrium. The T_{max} mechanism is used to calculate the required number of reinforcement layers (as described below).


T_{ob} mechanism

The T_{ob} mechanism is the critical base-sliding mechanism that requires precisely zero reinforcement force to establish its equilibrium. The T_{ob} mechanism is used to calculate the lengths of the reinforcement layers (as described below).

Required reinforcement

The method of calculating the required reinforcement can be summarized as follows:

- First, a search is made for the T_{max} mechanism
- Second, the total number of reinforcement layers (n) is calculated from T_{max} and the long-term design strength of the reinforcement (P_{des})
- Third, the depth to the first layer of reinforcement (z_1) is calculated
- Fourth, the pullout length of the first layer (L_{e1}) is calculated this defines point A on the following diagram
- Fifth, a search is made for the T_{ob} mechanism this defines point B on the following diagram
- Sixth, the depths of the remaining layers are calculated
- Finally, the lengths of all the layers are calculated as the distance from their intersection with line AB to their intersection with the front face of the slope (if the line AB leans to the *right*, ReActiv sets it to vertical instead, as recommended in the Advice Note)

Number of layers

The total number of reinforcement layers (n) is given by the equation:

$$n = \frac{T_{\max}}{P_{des}} + 1$$

where P_{des} (in kN per metre width of slope) is the long-term (factored) design strength of each reinforcement layer. Fractional values of n are not allowed: such values are rounded up to the next whole number.

The "+1" in the equation above ensures that a layer of reinforcement is provided at the base of the slope. As discussed in Appendix G of the Advice Note, this is not a source of over-design.

The terminology used in ReActiv differs from that given in the Advice Note, which uses the symbol N to represent the "minimum number of required layers". N is given by:

$$N = \frac{T_{max}}{P_{des}}$$

and N + 1 layers of reinforcement are provided. ReActiv's symbol n is related to the Advice Note's N by:

$$n = N + 1$$

Depth to the first layer

The depth to the first reinforcement layer (z_1) is given by:

$$z_1 = \frac{0.5H}{\sqrt{n-1}}$$

where H is the height of the (lower) slope and n the total number of reinforcement layers.

Pullout length of the first layer

The pullout length of the first layer of reinforcement (L_{e1}) is given by:

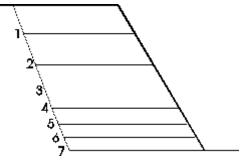
$$L_{\rm e1} = \frac{P}{\lambda_{\rm p}(\sigma_{\rm n}'\tan\phi + {\rm c}')}$$

where λ_p is the *pullout factor*; σ'_n is the normal effective stress acting on the reinforcement (see below); and φ and c' are the soil's effective stress design parameters. The parameters φ and c' in ReActiv correspond to φ_{des} and c'_{des} in the Advice Note.

The value of P is taken as the lesser of:

- The design strength of the reinforcement (P_{des})
- T_{max}

Normal effective stress

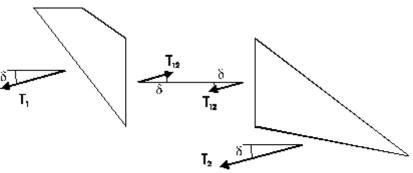

The normal effective stress (σ'_n) that acts on horizontal reinforcement, assuming it is flat, is equal to the vertical effective stress in the soil (σ'_v) mid-way along the pullout length of the reinforcement.

Depths of layers 2-n

The depths (z_i) of layers 2 to n are given by:

$$z_i = H \sqrt{\frac{i-1}{n-1}} \quad \text{for } i > 1$$

The diagram below illustrates a typical arrangement of layers using this formula.


Further checks

For most practical design cases, the reinforcement layout defined in the Advice Note will adequately cover all possible intermediate two-part wedge mechanisms. ReActiv may be used to confirm this, by performing spot checks of individual mechanisms, especially for $\phi_{12} > 0$.

Two-part wedge mechanism with inclined reinforcement

The design method given in the Advice Note for inclined reinforcement is identical to that for horizontal reinforcement, except as described below:

• The equation for the total out-of-balance force (T) is more complicated because the components T₁, T₂, and T₁₂ are inclined to the horizontal (see below)

- The T_{max} and T_{ob} mechanisms are called the $T_{max\delta}$ and $T_{o\delta}$ mechanisms to emphasize the fact that they are calculated for inclined reinforcement
- The average normal effective stress that acts on soil nails is not equal to the vertical effective stress in the soil

Governing equations

The general expression for the out-of-balance inclined reinforcement force (T) required for equilibrium is as given for horizontal reinforcement, except that the equation for zeta (as given below) is different.

ζ_1 or ζ_2 ?

The assumption that the reinforcement force is carried solely by Wedge 1 (i.e. using ζ_1) can lead to overly conservative designs for inclined reinforcement, particularly when the angle of interwedge friction (φ_{12}) is set to zero. This is the combination of parameters that was used to produce Table 4.1 in the Advice Note and is the most conservative set of assumptions that can be made.

The equation for ζ_1 is:

$$\zeta_{1} = \left[\frac{\left(\cos\theta_{1} + \sin\theta_{1}\tan\phi\right) + \left(\sin\theta_{1} - \cos\theta_{1}\tan\phi\right)\tan\phi_{12}}{\cos(\theta_{1} + \delta) + \sin(\theta_{1} + \delta)\tan\phi}\right]$$

The derivation of this factor is given in the Advice Note.

The alternative assumption, that the reinforcement force is carried solely by Wedge 2 (i.e. using ζ_2), leads to less conservative but more reasonable designs. Comparing the results based on ζ_2 with solutions obtained from Caquot and Kerisel's charts (see Appendix 2), indicates that calculations based on ζ_2 are safe for interwedge friction angles (φ_{12}) up to $\frac{1}{2}\varphi$ (where φ is the angle of shearing resistance of the soil).

The equation for ζ_2 is:

$$\zeta_{2} = \left[\frac{\left(\cos\theta_{2} + \lambda_{s}\sin\theta_{2}\tan\phi\right) + \left(\sin\theta_{2} - \lambda_{s}\cos\theta_{2}\tan\phi\right)\tan\phi_{12}}{\cos(\theta_{2} + \delta) + \lambda_{s}\sin(\theta_{2} + \delta)\tan\phi}\right]$$

$T_{max\delta}$ mechanism

The $T_{max\delta}$ mechanism is the mechanism that requires the greatest reinforcement force to establish its equilibrium. This definition is identical to that for the T_{max} mechanism: the change in notation merely emphasizes the fact that $T_{max\delta}$ is inclined

at $-\delta$ to the horizontal, whereas T_{max} is horizontal. For simplicity, ReActiv uses the term T_{max} to represent both T_{max} and $T_{max\delta}$.

The $T_{max\delta}$ mechanism is used to calculate the required number of reinforcement layers (as described below).

$T_{o\delta}$ mechanism

The $T_{o\delta}$ mechanism is the base-sliding mechanism that requires precisely zero reinforcement force to establish its equilibrium. This definition is identical to that for the T_{ob} mechanism: the change in notation merely emphasizes the fact that the base of the $T_{o\delta}$ mechanism is inclined at $-\delta$ to the horizontal, whereas the base of the T_{ob} mechanism is horizontal. For simplicity, ReActiv uses the term T_{ob} to represent both T_{ob} and $T_{o\delta}$.

The $T_{o\delta}$ mechanism is used to calculate the lengths of the reinforcement layers (as described below).

Required reinforcement

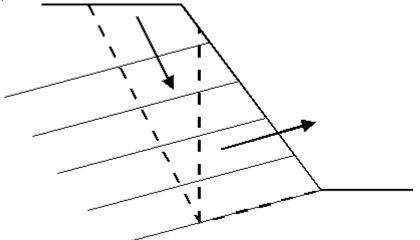
The method of calculating the required reinforcement is identical to that described previously, except that the normal effective stress (σ'_n) that is used to calculate the pullout length of the first layer of reinforcement is no longer equal to the vertical effective stress in the soil, owing to the inclination of the reinforcement. σ'_n is calculated as described below.

Normal effective stress

The normal effective stress (σ'_n) that acts on soil nails is given by:

$$\sigma_{\phi}' = \left(\frac{3+K_a}{4}\right)\sigma_{v}'$$

where σ'_v is the vertical effective stress in the soil at a point mid-way along the pullout length of the nail and K_a is the soil's coefficient of active earth pressure, given by:


$$K_a = \frac{1 - \sin \phi}{1 + \sin \phi}$$

where ϕ is the soil's design angle of shearing resistance.

The derivation of the equation for σ'_n is given in Appendix D of the Advice Note.

Base-sliding resistance

Base sliding occurs when the lower wedge (Wedge 2) of a two-part wedge mechanism slides directly over the surface of a layer of reinforcement (as shown below).

The base-sliding resistance of the reinforcement is incorporated in the general stability calculations presented previously via the terms R'_2 and K_2 , defined as follows:

$$R'_2 = \lambda_s N'_2 \tan \phi$$

$$K_2 = \frac{\lambda_s c' X}{\cos \delta}$$

where λ_s is a non-dimensional *sliding factor* (defined below); N'_2 and X are defined previously in this chapter; δ is the angle of inclination of the reinforcement; and ϕ and c' are the design effective stress parameters of the soil.

The sliding factor (λ_s) depends on the properties of the reinforcement and, in particular, on how much of the sliding surface the reinforcement occupies. The following table summarizes the values of λ_s that ReActiv adopts for the different types of reinforcement according to whether the angle of the lower wedge (θ_2) equals the angle of inclination of the reinforcement $(-\delta)$ or not.

Wedge angle (θ_2)	Reinforcement	λ
$\mathbf{\theta}_2 \neq \mathbf{\delta}$	All	1
$\theta_2 = \delta \pm 0.1^{\circ}$	Geotextile Geogrid Custom	f _{ds}
	Soil nails	$f_{ds}d_{b}/S_{b} + (1 - d_{b}/S_{b})$

In this table, f_{ds} is the reinforcement's direct-shear factor; and d_h and S_h are the effective hole diameter and horizontal spacing of the soil nails.

Compatibility with the Advice Note

The Advice Note uses the term *interface sliding factor* to quantify the reduction in shearing resistance caused by soil sliding over an interface instead of over soil. The interface sliding factor (α) is defined as:

$$\alpha = \frac{\tan \phi_{\text{interface}}}{\tan \phi_{\text{soil}}} = \frac{C'_{\text{interface}}}{C'_{\text{soil}}}$$

where ϕ is an angle of friction; c' is an effective cohesion; and the subscripts *interface* and *soil* denote values obtained in soil-on-interface and soil-on-soil tests, respectively. The values are obtained from shearing tests taken to large displacements. The soil parameters in these equations are *design* values, i.e. they include appropriate partial factors-of-safety or are large-displacement values.

The parameter f_{ds} used by ReActiv is identical to the parameter α used in the Advice Note.

Pullout resistance

The pullout resistance (P) of the reinforcement is calculated from the formula:

$$P = \lambda_p L_e(\sigma'_n \tan \phi + c')$$

where λ_p is a non-dimensional *pullout factor* (defined below); L_e is the length of the reinforcement that extends beyond the failure mechanism; σ'_n represents the average normal effective stress acting on the pullout length of the reinforcement; and φ and c' are the design effective stress parameters of the soil.

The pullout factor (λ_p) depends on the properties of the reinforcement and, in particular, on its mode of failure in pullout. The following table summarizes the values of λ_p that ReActiv adopts for the different types of reinforcement.

Reinforcement	Mode of failure	λ _ρ
Geotextile	Direct-shear	$2f_{ds}$
Geogrid	Bearing failure on ribs	2f _b
Soil nails	Direct-shear	$\pi d_h f_{ds} / S_h$
Custom	Unknown	2f _b

In this table, f_{ds} and f_b are the reinforcement's direct-shear and bearing factors, respectively; and d_h and S_h are the effective hole diameter and horizontal spacing of the soil nails.

For geotextiles, geogrids, and custom reinforcement, the normal effective stress (σ'_n) is equal to the vertical effective stress (σ'_v) acting midway along the pullout length of the reinforcement, where:

$$\sigma'_{v} = \gamma \left(z + \frac{q}{\gamma}\right) \left(1 - r_{u}\right)$$

and z is the depth of soil above the reinforcement, midway along its pullout length; γ is the unit weight of the soil; q is the applied surcharge; and r_u is Bishop's pore pressure parameter for the slope.

For soil nails σ'_n is given by:

$$\sigma_n' = \frac{1}{4} (3 + K_a) \sigma_v'$$

where K_a is given by Coulomb's equation:

$$K_a = \frac{1 - \sin \phi}{1 + \sin \phi}$$

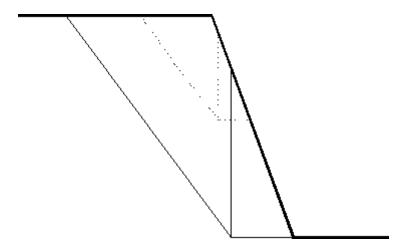
The value of ϕ in the last equation is the *design* value.

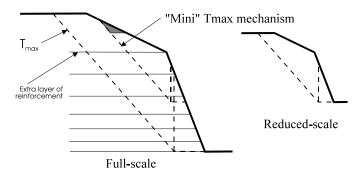
See Appendix D of the Advice Note for further discussion of the pullout resistance of soil nails.

Compatibility with the Advice Note

The parameter $f_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ used by ReActiv is identical to the parameter α' used in the Advice Note.

Minimizing soil nail pullout lengths


Pullout lengths for the top row of soil nails can sometimes be too long to be practical. The Advice Note describes an option whereby the pullout length of the upper layer (L_{e1}) may be reduced to L'_{e1} , as shown below, by reducing the horizontal spacing of the upper layer of nails from S_{h1} to S'_{h1} , where:

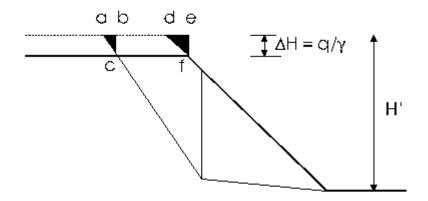

As the figure above shows, the zone of required reinforcement is now controlled by the pullout length of the second layer of nails (L_{e2}) instead of that of the first (L_{e1}) .

Special considerations for Two-part slopes

The equation for layer depths assumes that all geometrically-similar but reducedscale versions of the T_{max} mechanism (see below) will automatically be stable if the T_{max} mechanism is made stable. These reduced-scale mechanisms are higher in the slope than the T_{max} mechanism.

The geometrical similitude required for this assumption breaks down in the case of two-part slopes, where the "mini" T_{max} mechanism is more onerous than the reduced-scale T_{max} mechanism (see below), owing to the extra soil shown shaded.

In such situations, it is normally sufficient to provide an extra layer of reinforcement at the level of the slope crest.

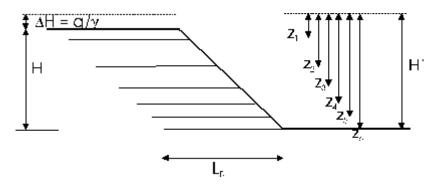

Surcharges

The Advice Note allows a uniform vertical surcharge on the slope crest to be considered either explicitly or, more simply, as an equivalent additional thickness of fill. ReActiv adopts the latter approach. When a surcharge is specified, the program determines the T_{max} and T_{ob} mechanisms based on the effective height of the slope (H'):

$$H' = H + \Delta H = H + \frac{q}{\gamma}$$

where H is the actual slope height (in metres); q is the surcharge (in kN/m^2); and γ is the unit weight of fill (kN/m^3).

This method is an approximation, and introduces small errors into the calculation of the out-of-balance force. Instead of attributing the extra weight of *bcfe* to Wedge 1 (see below), ReActiv uses the slightly smaller weight of *acfd*. ReActiv also (conservatively) overestimates the pore pressures by $r_u \gamma \Delta H$ and (unconservatively) includes cohesion on the surface *ac*.


When a surcharge is present, ReActiv calculates layer spacings from the expressions:

$$z_1 = \frac{0.5H'}{\sqrt{n-1}}$$

and

$$z_i = H' \sqrt{\frac{i-1}{n-1}} \quad for \ i > 1$$

where n is the total number of layers. The depths (z_i) are measured from the top of the "equivalent" slope, as shown below.

Compatibility with the Advice Note

A number of symbols are used in the *ReActiv User Manual* that are different from those used in the Advice Note. The following table provides a "translation" between the two documents.

Symbol used in						
ReActiv User Manual Advice Note						
φ	$\varphi_{\rm des}'$					
c'	$c_{ m des}^{\prime}$					
T _{max}	$T_{max'} \; T_{max\delta}$					
T _{ob}	$T_{ob'}$ $T_{o\delta}$					
f_{ds}	α					
f _b	α′					
n	N + 1					

Proceeding to a final design

This chapter of the *ReActiv User Manual* discusses the results obtained from the program and summarizes the steps that need to be followed in order to proceed to a final design.

The chapter also discusses ReActiv's limitations and inherent conservatism and compares ReActiv to other calculation methods.

Checking individual mechanisms

The reinforcement layout that ReActiv determines will, for most practical design cases, ensure that all possible two-part wedge mechanisms passing through the reinforced zone are stable. You can check the stability of any particular mechanism by choosing **Calculate > Single Mechanism...** from the menu bar. This will give you the *required* reinforcement force: you will have to calculate the *available* force by hand.

Appendix G of the Advice Note gives guidance on sensible mechanisms to check.

Competent foundation

ReActiv assumes the existence of a competent bearing material directly beneath the slope. If the foundation is not competent, or is not significantly better than the slope material, then underlying slip mechanisms should be checked by alternative means (for example, Janbu's or Bishop's methods, etc.). If the foundation is independently improved (e.g. by replacement or separate stabilization methods), then the reinforcement layout from ReActiv will be relevant. If the foundation is not independently improved (more likely to be the case for cuttings than for embankments), then the reinforced zone may need extending and/or increasing in density, as dictated by the results of slip calculations for mechanisms which penetrate the underlying soils.

Front facing

In most practical cases you will need to provide front face protection to the slope to guard against damage caused by ultra-violet radiation, fire, and/or vandalism. ReActiv implicitly assumes the presence of a "structural" front facing (e.g. wrap-around construction, in the case of geotextiles and geogrids, or shotcrete or similar, in the case of soil nailing).

Appendix G of the Advice Note discusses the effects of the absence of structural facings

Checking pullout of the base layer

ReActiv implicitly assumes that the T_{ob} mechanism allows sufficient pullout length on the base layer of reinforcement behind the T_{max} mechanism. In extreme cases, where the reinforcement has a long pullout length requirement (perhaps widely spaced, high strength strip reinforcement or soil nails), this may not be the case and should be checked, and the base width of the reinforcement zone extended as necessary. This is not normally necessary.

Elongation of reinforcement

Elongation of the reinforcement under working conditions needs to be checked in terms of both the serviceability requirements of the reinforced slope, and also strain compatibility with the soil. (A method for estimating front face displacements for the former can be found at the end of Section 3 of the Advice Note.) Strain compatibility with the soil is important if $\phi = \phi_{critical state}$ is *not* selected. The reinforcement should not be so extensible that the soil strength passes through "peak" and starts "strain softening" to below its design strength before the reinforcement has picked up its working load.

Drainage

Drainage measures should be provided as appropriate to ensure that the pore pressures assumed in the analysis will never be exceeded. The design should also be checked for the potential effects of water filled tension cracks, if it is likely that these would form behind the reinforced zone.

Inherent conservatism of a frictionless interwedge boundary

ReActiv's calculation method is based on the two-part wedge mechanism with a vertical interwedge boundary. The User may specify whether the interwedge boundary is frictional or frictionless, and may also specify what wedge the reinforcement force should be applied to. The mechanism is simple enough to check by hand-calculation, is intuitive, and is particularly suited to the case of base sliding over a planar layer of reinforcement.

The assumption of a frictionless interwedge boundary (i.e. $\phi_{12} = 0$) yields inherently conservative values of out-of-balance reinforcement force when compared to more

exact solutions (e.g. Caquot & Kerisel, Sokolovsky, and the log spiral method), by typically 10 to 30% in terms of reinforcement density and 5 to 10% in terms of reinforcement length. In cases where these percentages do not represent a significant extra cost to the project as a whole, then setting $\phi_{12} = 0$ is attractive in that it is inherently conservative and relieves the designer of having to justify the actual distribution of the reinforcement force (see Chapter 8).

In cases where these percentages do represent a significant extra cost to the project as a whole, ReActiv allows the User to take into account friction on the interwedge boundary (although it is recommended that ϕ_{12} is never taken to be greater than $\frac{1}{2}\phi$). As explained in Chapter 8, this requires some assumption to be made about the *distribution* of the reinforcement force between the two wedges.

ReActiv allows you to choose between having all the reinforcement force acting on Wedge 1 or all on Wedge 2. The latter option is preferable since it yields a lower reinforcement requirement and a better conditioned set of equations. It is considered to be a reasonable assumption for most design cases and, for this reason, is the program default.

If interwedge friction is employed, then you should satisfy yourself that it is reasonable to place all the reinforcement force on Wedge 2 (if that is the option you choose). See Chapter 8 for information on doing this. You should also look at the shape of the T_{max} mechanism relative to the reinforcement layout and check that most of the reinforcement force does indeed act on Wedge 2 (note, in this context, that it is the *top* of the interwedge boundary that determines where the force from a particular layer of reinforcement acts). For borderline cases (typically for slopes with small angles), you are advised to check how different the design layout is if you adopt the alternative assumption of all the reinforcement force on Wedge 1 or change the interwedge friction angle.

Using ReActiv to check other design methods

When checking a design which does not adopt the optimum layer spacing theory embodied in the Advice Note (e.g. designs which adopt constant vertical spacing with depth or multiples of fixed vertical spacings) then ReActiv may not be used in "automatic" mode. ReActiv can however be usefully employed to identify the key mechanisms ($T_{max'}$, T_{ob}) against which the design can be assessed. The Advice Note suggests that any design is acceptable provided that::

- The T_{max} and T_{ob} mechanisms are satisfied
- All intermediate mechanisms are sufficiently catered for

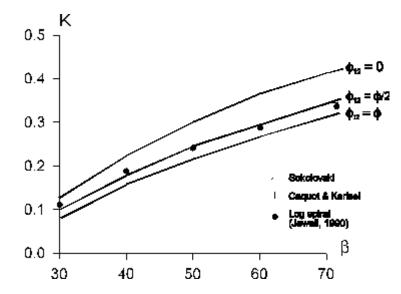
• No individual layers are locally over-stressed

The *available* force from the lengths of reinforcement projecting beyond the mechanism in question may then be compared, by hand calculation or otherwise, with the *required* force (calculated by ReActiv).

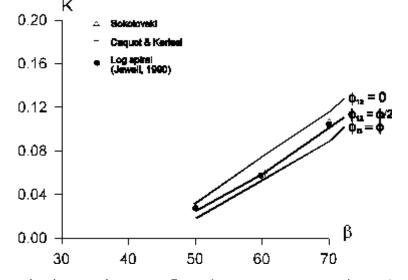
Comparison with published results

This appendix compares results obtained by GCG ReActiv with those published in the geotechnical literature by Sokolovski, Caquot and Kerisel, and Jewell. In each case, the maximum out-of-balance force (T_{max}) has been compared at varying slope angles (β). To facilitate these comparisons, T_{max} has been normalized as follows:

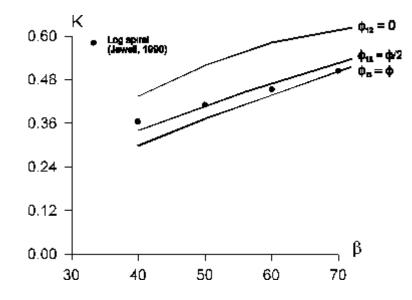
$$K = \frac{T_{\text{max}}}{\frac{1}{2}\gamma H^2}$$

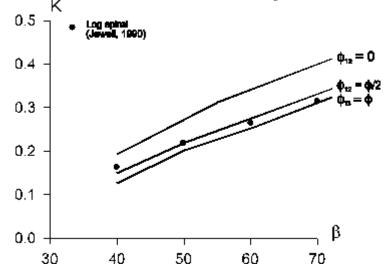

where γ is the unit weight of the soil and H is the height of the slope. Other parameters that have been varied are ϕ , c', ϕ_{12} , δ , λ_s , i, and r_u ; and whether the reinforcement force acts on Wedge 1 or 2. See Chapter 9 for a full explanation of these terms and symbols.

Horizontal reinforcement


The following figures present values of K obtained by ReActiv for horizontal reinforcement with varying angles of interwedge friction ($\phi_{12} = 0$, $\phi_{12} = \phi/2$, and $\phi_{12} = \phi$). Also shown are results presented by Sokolovski, Caquot and Kerisel, and Jewell.

In most cases, setting $\phi_{12} = \phi/2$ yields results that are in reasonable agreement with the published values. In all cases, setting $\phi_{12} = 0$ yields conservative values of K (i.e. values above the published results) and setting $\phi_{12} = \phi$ yields unconservative values (i.e. values below the published results).


Parameters for the following figure are: $\delta = 0$, $\lambda_s = 1$, i = 0, $r_u = 0$, $\phi = 20^\circ$, c' = 0.

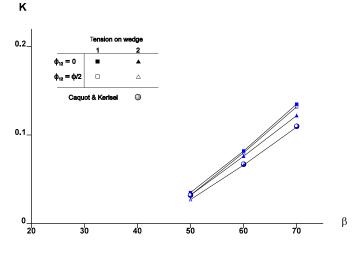

Parameters for the next figure are as above, except $\phi = 40^{\circ}$.

Parameters for the next figure are: $\delta = 0$, $\lambda_s = 1$, i = 0, $r_u = 0.5$, $\varphi = 30^\circ$, c' = 0.

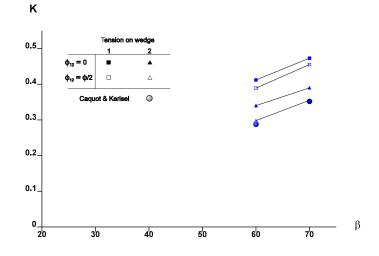
Parameters for the next figure are as above, except $r_{\mu} = 0.25$.

Inclined reinforcement

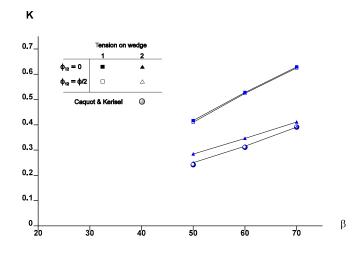
The following figures present values of K obtained by ReActiv for inclined reinforcement with varying angles of interwedge friction ($\phi_{12} = 0$ and $\phi_{12} = \phi/2$) and varying the wedge on which the tension force acts (Wedge 1 or 2). Also


shown are results derived from Caquot and Kerisel.

In all cases, applying the tension force on Wedge 1 yields conservative values of K (i.e. values above the published results).


Less conservative values of K are obtained when the tension force is applied to Wedge 2 and ϕ_{12} is set to zero. However, the best fit to the published results is obtained when the tension force is applied to Wedge 2 and ϕ_{12} is set to $\phi/2$. Unfortunately, with this combination of parameters, the results are unconservative at low slope angles.

By default, ReActiv applies the tension force to Wedge 2 and sets φ_{12} equal to zero. This is conservative.


Parameters for the following figure are: $\delta = 10^{\circ}$, $\lambda_s = 1$, i = 0, $r_u = 0$, $\varphi = 40^{\circ}$, c' = 0.

Parameters for the next figure are as above, except $\phi = 20^{\circ}$.

Parameters for the next figure are: $\delta = 20^{\circ}$, $\lambda_s = 1$, i = 0, $r_u = 0$, $\phi = 40^{\circ}$, c' = 0. Parameters for the next figure are as above, except $\phi = 20^{\circ}$.

Soil Classification System

The Soil Classification System used by ReActiv is based on a combination of:

- The British Soil Classification System (BSCS), as described in BS 5930:1981
- The Unified Soil Classification System (USCS), as described in ASTM D2487-1069
- The German Soil Classification System (DIN), as decribed in DIN 18 196

In addition to the basic groupings of Gravel, Sand, Silt, and Clay that are common to all these systems, the Soil Classification system includes commonly-encountered soils under the headings Organic, Fill, Chalk, Rock, River Soil, and Custom.

The following table lists the soils that are included in the Soil Classification System and give the corresponding group symbols from each of the established systems listed above (where they are available).

	Class	Symb ol	BSCS	USCS	DIN	States
Gravel	Unclassified* Well-graded Uniformly-gr'd Gap-graded Silty Clayey* Very silty* Very clayey*	G GW GPu G-M G-C GM GC	G GW GPu G-M G-C GM GC	G GW GP G?-GM G?-GC GM GC	G GW GI GU GT GU GT	Unpecified (Unsp) Very loose (VL)¶ Loose (L) Medium dense (MD) Dense (D) Very dense (VD) Poorly comp'd (PC) Well comp'd (WC)
Sand	Unclassified* Well-graded Uniformly-gr'd Gap-graded Silty Clayey* Very silty* Very clayey*	S SW SPu SPg S-M S-C SM SC	S SW SPu SPg S-M S-C SM SC	S SW SP SP S?-SM S?-SC SM SC	S SW SE SU ST SU ST	Same as GRAVEL
Granular silt	Unclassified Gravelly Sandy Low-plasticity	M MG MS ML	M MG MS ML	M ML/MH ML/MH ML	U - - UL	Unpecified (Unsp) Very loose (VL)¶ Loose (L) Medium dense (MD) Dense (D) Very dense (VD)

				0	-
Ρ	2	σ		×.	/
	а	×.	C	 J.	/

	Class	Symb ol	BSCS	USCS	DIN	States
Cohesive silt	Unclassified*† Intplast.*† High-plast.*†	M MI MH	M MI MH-ME	M ML MH	U UM -	Same as CLAY
Clay	Unclassified*†\$ Gravelly*† Sandy*† Low-plast.*† Int-plast.*†\$ High-plast.*†\$ Laminated*†	C CG CS CL CI CH Lam	C CG CS CL CI CH-CE -	C CL/CH CL/CH CL CL CH -	T - TL TM TA -	Unspecified (Unsp)*\$ Very soft (VSo) Soft (So) Firm (F)*\$ Stiff (St)*\$ Very stiff (VSt)*\$ Hard (H)*\$
Organic	Unclassified† Organic clay† Organic silt† Peat† Loam†	O MO CO Pt Loam	O MLO/ H CLO/H Pt	O OL OH Pt	O (OU) OT HN/HZ	Same as CLAY
Granular fill	Unclassified Rock fill Slag fill Gravel fill Sand fill Chalk fill Brick hardcore Ashes PFA	MdG RockF Slag GravF SandF ChkF Brick Ash PFA				Unspecified Poorly-comp'd (PC) Well-compacted (WC)
	Clay fill†	ClayF				Same as CLAY
Chalk	Unclassified* Grade I* Grade II* Grade III* Grade IV* Grade V Grade VI	Chk Chk1 Chk2 Chk3 Chk4 Chk5 Chk6				Unspecified (Unsp)
Rock	Marl* Weathered rock*	Marl Rock				Unspecified (Unsp)
River soil	River mud† Dock silt† Alluvium†	RivM Dock S Alluv				Unspecified (Unsp) Very soft (VSo) Soft (So)

Class	Symb ol	BSCS	USCS	DIN	States	
Custom*†\$	Cust				Unspecified (Unsp)*\$	
G? = G, GW, or GP; S? = S, SW, or SP; Int. = intermediate; plast. = plasticity						
*may have effective of						
†may be undrained						
\$may be fissured (if s	ymbol appea	irs next to C	lass & State)			
¶potential for liquefac	ction					

Database of soil properties

ReActiv uses a database of soil properties to check that any parameters you enter for a soil are compatible with that soil's engineering description.

ReActiv's checking system is based on the concept that there are *normal* and *extreme* ranges for each soil parameter.

If you enter a value that is outside the *extreme* range for a particular soil parameter, ReActiv issues an error message and prevents you from proceeding until you have changed the offending value.

If you enter a value that is outside the *normal* range, ReActiv issues a warning message and allows you to proceed only if you confirm that the value entered is correct.

The default parameters are provided to assist in initial design studies only, and should not be used as a substitute for measured parameters. As in all forms of geotechnical design, parameters should be chosen on the basis of adequate site investigation, including suitable laboratory and field measurements.

The publications that have been referred to in compiling the database include:

- Terzaghi & Peck (1967)
- NAVFAC DM-7 (1971)
- Peck, Hanson, & Thornburn (1974)
- Winterkorn & Fang (1975)
- Canadian Foundation Engineering Manual (1978)
- Reynolds & Steedman (1981)

- Bell (1983)
- Mitchell (1983)
- TradeARBED's Spundwand-Handbuch Teil 1, Grundlagen (1986)
- Bolton (1986)
- Clayton & Militiski (1986)
- Clayton (1989)
- Tomlinson (1995)
- British Steel's Piling Handbook (1997)

Invaluable advice regarding the properties of various soils was provided by Professors JB Burland, PR Vaughan, and DW Hight and by Dr G Sills.

In the following table ρ_d = dry density; ρ_w = wet density; φ_{peak} = peak angle of friction; φ_{crit} = critical state angle of friction; c'_{peak} = peak effective cohesion; c'_{crit} = critical state effective cohesion; S_u = undrained shear strength; ΔS_u = rate of increase in S_u with depth.

	Parameter	Classification		sification Minimum		Defaul	Maximum	
		Class	Class State		Norma	t	Norma	Ext.
Gravel	ρ _d (kg/m³)	All	Unsp	1200	1400	2050	2200	2500
jra			VL	1200	1300	1500	1600	1800
0			L	1300	1400	1650	1800	2000
			MD	1400	1500	1850	2000	2200
			D	1500	1700	2050	2200	2400
			VD	1700	2000	2250	2400	2500
			PC	1200	1400	1650	1800	2200
			WC	1400	1700	2050	2200	2500
	ρ _s (kg/m³)	All	Unsp	1500	1800	2200	2300	2500
	13(0)		VĽ	1500	1700	1850	1900	2100
			L	1700	1800	2000	2100	2200
			MD	1800	1900	2100	2200	2300
			D	1900	2000	2200	2300	2400
			VD	2000	2200	2250	2400	2500
			PC	1500	1800	2000	2100	2300
			WC	1800	2000	2200	2300	2500

	Parameter	Classif	ication	Min	imum	Defaul	Maxii	mum		
_		Class	State	Ext.	Norma	t	Norma	Ext.		
	$\phi_{{}_{\text{peak}}} (\text{deg})$	All	Unsp VL L MD D VD PC WC	28 28 30 35 40 45 28 35	35 32 35 40 45 50 35 45	37 34 37 42 47 52 37 47	50 38 40 45 50 55 40 50	60 40 45 50 55 60 50 60		
	ϕ_{crit} (deg)	All	All	28	35	37	40	45		
	c' _{peak} (kPa)	G G_C GM GC	All	0	0	0	0	10		
		Others	All		Not applicable					
	c' _{crit} (kPa)	G G_C GM GC	All	0	0	0	0	5		
		Others	All		N	ot applicat	ble			
Sand	ρ _d (kg/m³)	All	Unsp VL L D VD PC WC	1200 1200 1225 1275 1350 1450 1200 1275	1275 1225 1275 1350 1450 1575 1275 1450	1675 1450 1500 1575 1675 1800 1500 1675	1800 1550 1600 1700 1800 1900 1600 1800	2200 1750 1850 1950 2050 2200 1950 2200		
	ρ _s (kg/m³)	All	Unsp VL L D VD PC WC	1600 1600 1750 1800 1850 1950 1600 1800	1800 1750 1800 1850 1950 2050 1800 1950	2075 1900 1950 1975 2075 2175 1950 2075	2150 1975 2000 2050 2150 2250 2000 2150	2400 2000 2050 2150 2250 2400 2150 2400		

	Parameter	Classification		Minimum		Defaul	Maximum		
		Class	State	Ext.	Norma	t	Norma	Ext.	
	ϕ_{peak} (deg)	All	Unsp	20	30	32	40	55	
			VL	20†	25†	26†	28†	30†	
	†Reduced		L	26	30	32	35	40	
	to allow for		MD	29	33	34	37	45	
	potential		D	33	36	37	40	50	
	liquefaction		VD	37	40	42	45	55	
			PC	23	30	32	35	45	
			WC	29	36	37	40	55	
	ϕ_{crit} (deg)	All	All	23	30	32	35	40	
	c' _{peak} (kPa)	S	All	0	0	0	0	10	
	discounting	S_C							
	natural	SM							
	cementatio	SC							
	n	Others	All		N	ot applicat	ble		
	c' _{crit} (kPa)	S	All	0	0	0	0	5	
		s_c							
		SM							
		SC							
		Others	All		Ν	ot applicat	ole		
SIIL	ρ _d (kg/m³)	All	All	1100	1275	1850	2150	2200	
uranular siit	ρ _s (kg/m³)	All	All	1500	1800	2050	2150	2400	
כניי	ϕ_{peak} (deg)	All	Unsp	20	27	28	33	45	
			VL	20†	25†	26†	28†	30†	
	†Reduced		L	23	27	28	31	35	
	to allow for		MD	25	28	29	32	37	
	potential		D	27	29	30	33	40	
	liquefaction		VD	30	32	33	36	45	
	ϕ_{crit} (deg)	All	All	20	27	28	31	35	
	c' _{peak} (kPa)	All	All	0	0	0	5	10	
	c' _{crit} (kPa)	All	All	0	0	0	0	5	
Cohesive silt	ρ_{d} (kg/m ³)	All	All	1100	1275	1850	2150	2200	
	ρ _s (kg/m³)	All	All	1500	1800	2050	2150	2400	

	Parameter	Classi	fication	Min	imum	Defaul	Maximum		
		Class	State	Ext.	Norma	t	Norma	Ext.	
	$\phi_{{}_{peak}}$ (deg)	M MI MH	All	17 17 17	25 25 20	28 28 23	35 35 30	45 40 35	
	ϕ_{crit} (deg)	M MI MH	All	17 20 17	22 22 18	25 25 19	30 30 22	32 32 25	
	c' _{peak} (kPa)	All	VSo- So	0	0	0	0	0	
			Others	0	0	0	5	10	
	c' _{crit} (kPa)	All	VSo- So	0	0	0	0	0	
			Others	0	0	0	0	5	
	S _u (kPa)	All	Unsp VSo So F St VSt H	1 10 30 60 100 200	20 5 20 40 75 150 300	20 10 25 50 100 200 375	150 20 40 75 150 300 500	1000 30 60 100 200 400 1000	
	ΔS_{u} (kPa)	All	VSo- So	-100	-10	0	4	100	
			Others	-100	-10	0	8	100	
Clays	ρ _d (kg/m³)	All	Unsp VSo So F St VSt H	1200 1200 1300 1450 1600 1750 1900	1500 1400 1500 1650 1800 1950 2100	2050 1650 1750 1900 2050 2200 2300	2200 1800 1900 2050 2200 2350 2400	2500 2000 2100 2250 2400 2450 2500	
	ρ _s (kg/m³)	All	Unsp VSo So F St VSt H	1200 1200 1300 1450 1600 1750 1900	1500 1400 1500 1650 1800 1950 2100	2050 1650 1750 1900 2050 2200 2300	2200 1800 1900 2050 2200 2350 2400	2500 2000 2100 2250 2400 2450 2500	

	Parameter	Classi	ication	Mini	imum	Defaul t	Maximum		
		Class	State	Ext.	Norma		Norma	Ext.	
	$\phi_{{}_{\text{peak}}} \left(\text{deg} \right)$	C CG CS CL CI CH Lam	All	15 18 20 18 15 15	20 20 24 20 16 16	20 24 27 23 20 19	33 33 33 33 30 27 25	39 39 39 39 37 31 39	
	ϕ_{crit} (deg)	C CG CS CL CI CH Lam	All	8 18 18 18 18 8 8	20 20 20 20 20 15 12	23 24 23 23 18 16	33 33 28 28 20 20	39 39 30 30 22 22	
	c' _{peak} (kPa)	All	Unsp VSo So	0 0 0	0 0 0	0 0 0	10 0 0	15 0 0	
			Others	0	0	2	10	15	
	c' _{crit} (kPa)	All	VSo- So	0	0	0	0	0	
			Others	0	0	0	0	5	
	S _u (kPa)	All	Unsp VSo So F St VSt H	1 10 30 60 100 200	20 5 20 40 75 150 300	20 10 25 50 100 200 375	150 20 40 75 150 300 500	1000 30 60 100 200 400 1000	
	ΔS _u (kPa)	All	VSo- So	-100	-10	0	8	100	
			Others	-100	-10	0	8	100	
Organic	ρ _d (kg/m³)	Uncl MO CO Pt Loam	All	800 1000 1000 800 1450	1000 1250 1250 1000 1650	1500 1500 1500 1200 1900	2050 1600 1600 1300 2050	2250 1750 1750 1400 2250	

	Parameter	Classif	ication	Mini	mum	Defaul	Maxi	mum
		Class	State	Ext.	Norma	t	Norma	Ext.
	ρ _s (kg/m³)	Uncl MO CO Pt Loam	All	850 1400 1400 850 1450	1050 1500 1500 950 1650	1650 1650 1650 1250 1900	2050 1750 1750 1400 2050	2250 1950 1950 1500 2250
	$\phi_{{}_{\text{peak}}} \left(\text{deg} \right)$	Uncl MO CO Pt Loam	All	18 18 18 18 20	20 20 20 20 24	23 23 23 23 23 27	30 30 30 30 33	39 37 37 37 37 39
	$\phi_{\text{crit}}(\text{deg})$	Uncl MO CO Pt Loam	All	18 18 18 18 20	20 20 20 20 20 24	23 23 23 23 23 27	30 30 30 30 33	39 37 37 37 39
	c' _{peak} (kPa)	All	All		Ν	ot applicat	ole	
	c' _{crit} (kPa)	All	All		Ν	ot applicat	ole	
	S _u (kPa)	All	Unsp VSo So F St VSt H	1 10 30 60 100 200	20 5 20 40 75 150 300	20 10 25 50 100 200 375	150 20 40 75 150 300 500	1000 30 60 100 200 400 1000
	ΔS_{u} (kPa)	All	VSo- So	-100	-10	0	8	100
			Others	-100	-10	0	8	100
Granular fill	ρ _d (kg/m³)	MdG RockF Slag GravF SandF ChkF Brick Ash PFA	All	600 1400 1000 1200 1200 1250 1100 600 900	1225 1500 1200 1400 1225 1300 1300 650 1000	1600 1900 1450 1950 1600 1350 1600 1000 1350	1800 2100 1600 2200 1800 1400 1750 1000 1500	2500 2200 1800 2500 2200 1450 1900 1200 1700

	Parameter	Classi	ication	Mini	imum	Defaul	Maximum	
		Class	State	Ext.	Norma	t	Norma	Ext
	ρ _s (kg/m³)	MdG	All	1200	1650	2000	2150	250
		RockF		1750	1900	2100	2200	230
		Slag		1400	1700	1850	1900	200
		GravF		1500	1800	2150	2300	250
		SandF		1600	1800	2050	2150	240
		ChkF		1700	1750	1825	1850	190
		Brick		1400	1650	1850	1950	210
		Ash		1200	1300	1450	1500	180
		PFA		1350	1500	1750	1800	200
	$\phi_{{}_{peak}}$ (deg)	MdG	All	23	30	35	45	60
		RockF		35	40	43	50	60
		Slag		25	30	33	40	50
		GravF		28	35	40	50	60
		SandF		23	30	32	35	40
		ChkF		25	30	32	37	43
		Brick		35	40	42	45	50
		Ash		30	35	37	40	45
		PFA		27	30	32	37	40
	ϕ_{crit} (deg)	MdG	All	25	30	32	35	45
		RockF		30	35	37	40	45
		Slag		25	30	32	35	45
		GravF		28	35	37	40	45
		SandF ChkF		23 25	30	32 32	35	40
				25 25	30 30	32 32	35 35	40 40
		Brick Ash		25 27	30	32	38	40
		PFA		27	30	33	35	42
=	ρ _d (kg/m³)	All	All	950	1100	1550	1750	190
Cohesive fill								
ohes	ρ _s (kg/m³)	All	All	1300	1500	1850	2050	225
Ŭ	$\phi_{{}_{\text{peak}}} \left(\text{deg} \right)$	All	All	15	17	21	30	35
	$\phi_{\text{crit}} \text{ (deg)}$	All	All	15	17	21	28	30
	c' _{peak} (kPa)	All	All		Ν	ot applical	ole	
	c' _{crit} (kPa)	All	All		Ν	ot applicat	ole	
	S _u (kPa)	All	Unsp	1	20	20	150	100
			VSo	1	5	10	20	30
			So	10	20	25	40	60
			F	30	40	50	75	100
			St	60	75	100	150	200
			VSt	100	150	200	300	400
			Н	200	300	375	500	100

	Parameter	Classification		Mini	imum	Defaul	Maximum	
		Class	State	Ext.	Norma	t	Norma	Ext.
	∆S _u (kPa)	All	VSo- So	-100	-10	0	8	100
			Others	-100	-10	0	8	100
Chalk	ρ _d (kg/m³)	Chk Chk1 Chk2 Chk3 Chk4 Chk5 Chk6		1255 1525 1350 1275 1250 1225 1225	1275 1650 1400 1325 1300 1275 1275	1450 2050 1575 1450 1375 1350 1350	2250 2250 1650 1500 1425 1400 1400	2500 2500 1725 1550 1475 1450 1450
	ρ _s (kg/m³)	Chk Chk1 Chk2 Chk3 Chk4 Chk5 Chk6		1725 1925 1800 1750 1750 1725 1725	1750 2025 1850 1800 1775 1750 1750	1900 2300 1975 1900 1850 1825 1825	2450 2450 2025 1925 1875 1850 1850	2600 2600 2075 1950 1900 1900 1900
	$\phi_{_{peak}}$ (deg)	Chk Chk1 Chk2 Chk3 Chk4 Chk5 Chk6		25 25 25 25 25 25 25	30 30 30 30 30 30 30 30	35 35 34 34 33 32 32	45 45 43 41 39 37 35	55 55 52 49 46 43 40
	ϕ_{crit} (deg)	All		25	30	32	35	40
	c' _{peak} (kPa)	Chk Chk1 Chk2 Chk3 Chk4 Chk5 Chk6		0 0 0 0 0 0	0 0 0 0 0	0 10 5 2 0 0	20 20 20 10 0	100 100 50 50 20 0 0
	c' _{crit} (kPa)	All		0	0	0	0	5
Rock	ρ _d (kg/m³)	All		2050	2100	2250	2300	2500
Ā	ρ _s (kg/m³)	All		2050	2100	2250	2300	2500
	$\phi_{{}_{peak}}$ (deg)	All		27	30	33	38	42
	ϕ_{crit} (deg)	All		27	30	33	38	42

	Parameter	Classif	ication	Mini	imum	Defaul	Maxii	mum		
		Class	State	Ext.	Norma	t	Norma	Ext.		
	c' _{peak} (kPa)	All		0	0	5	10	20		
	c' _{crit} (kPa)	All		0	0	0	0	5		
River Soil	ρ _d (kg/m³)	All	Unsp VSo So	1200 1200 1200	1250 1250 1400	1600 1600 1650	1800 1800 1800	2000 2000 2000		
_	ρ _s (kg/m³)	All	Unsp VSo So	1200 1200 1200	1250 1250 1400	1600 1600 1650	1800 1800 1800	2000 2000 2000		
	$\phi_{_{peak}}$ (deg)	All	All	15	16	22	33	39		
	ϕ_{crit} (deg)	All	All	15	16	22	33	39		
	c' _{peak} (kPa)	All	All		Ν	ot applicat	ole			
	c' _{crit} (kPa)	All	All	Not applicable						
	S _u (kPa)	All	Unsp VSo So	1 1 10	20 5 20	20 10 25	40 20 40	60 30 60		
	ΔS _u (kPa)	All	All	-100	-10	0	4	100		
mo	ρ _d (kg/m³)	Uncl	Unsp	600	1200	2000	2400	2500		
Custom	ρ _s (kg/m³)	Uncl	Unsp	850	1200	2000	2400	2600		
	$\phi_{{}_{\text{peak}}}$ (deg)	Uncl	Unsp	10	20	30	50	60		
	ϕ_{crit} (deg)	Uncl	Unsp	8	20	25	35	45		
	c' _{peak} (kPa)	Uncl	Unsp	0	0	0	10	100		
	c' _{crit} (kPa)	Uncl	Unsp	0	0	0	0	5		
	S _u (kPa)	Uncl	Unsp	1	5	20	300	1000		
	ΔS_{u} (kPa)	Uncl	Unsp	-100	-10	0	10	100		